CH- BITSAT 2010

- 1. The hybridization state of C atom in butendioic acid is : (1) sp^2 (2) sp^3 (3) both two (4) sp
- 2. Which of the following is not a isomer of pentane :
 - (1) n-pentane
 - (2) 2, 2-dimethy 1 propane
 - (3) 2, 3-dimethy 1 butane
 - (4) 2-methy 1 butane
- 3. The oxidation number of C atom in Ch_2CI_2 and CCI_4 are respectively : (1) -2 and -4 (2) 0 and -4 (3) 0 and 4 (4) 2 and 4
- 4. Which of the following dissolves in lonic solvents : (1) C_6H_5 (2) CH_3OH (3) CCI_4 (4) C_5H_{12}
- 5. The conjugate acid of HS is : (1) S^{-2} (2) H_2S_2 (3) both two (4) none
- 6. Phenolphthalein of pH range [8-10] is used in which of the following type of titration as a suitable indicator :
 - (1) NH₄OH and HCI
 - (2) NH₄OH and HCOOH
 - (3) NH₄OH and $C_2H_4O_2$
 - (4) NaOH and $C_2O_4H_2$
- 7. Which of the following is iron are :
 (1) Malachite
 (2) Hernatite
 (3) Siderite
 (4) Limonite
- 8. The molar concentration of chloride ions in the resulting solution of 300 ml.of 3.0 M NaCI and 200 ml. of 4.0 M BaCl₂ will be :
 (1) 1.7 M
 (2) 1.8 M
 (3) 5.0 M
 (4) 3.5 M
- 9. Which of the following has least bond energy : (1) N_2^{-2} (2) N_2^{-} (3) N_2^{+} (4) N_2
- 10. Which of the following species has highest bond energy : (1) O_2^{-2} (2) O_2^+ (3) O_2^- (4) O_2
- 11. Which of the following compound is not aromatic :
 - (1) 1, 3-cyclobutene
 - (2) pyridine
 - (3) furane
 - (4) thiophene

- 12. Which of the following compound is used as refrigerant :
 - (1) CCI_2F_2
 - (2) CCI₄
 - (3) CF₄
 - (4) Acetone
- 13. Which of the following is weak acid :

(1) C_6H_6 (2) $CH_3-C\equiv CH$ (3) $CH_2=CH_2$ (4) $CH_3-C\equiv C-CH_3$

- 14. L.P.G. mainly consist of the following :
 - (1) Methane (2) Hydrogen (3) Acetylene (4) Butane
- **15. The solubility product of CaCo₃ is 5 x 10⁻⁹. The solubility will be :** (1) 2.5×10^{-5} (2) 7×10^{-5} (3) 2.5×10^{-4} (4) 2.2×10^{-9}
- **16.** The outer electronic configuration of alkali earth metals is : (1) nd^{10} (2) ns^1 (3) np^6 (4) ns_2
- **17. The nature of 2, 4, 6-trinitrophenol is :** (1) Neutral (2) Basic (3) Acidic (4) Weak basic
- **18. Which of the following group is sharp ortho and para directive :** (1) $-C_6H_5$ (2)-OH (3) $-CH_3$ (4) -CI

19. By which of the following process hydrocarbons are found from petroleum : (1) combustion

- (2) fractional distillation
- (3) addition
- (4) all above
- 20. A sample of petroleum contains 30% n-heptane, 10% 2-methyl hexane and 60% 2, 2, 4-trimethyl pentane, the octane no. of this sample will be : (1) 30% (2) 60% (3) 10% (4) 70%
- **21.** In which of the following halogens p-electrons does not take part in resonance :

(1) $CH_2 = CH - CH_2Cl$	(2) BrC_6H_5
(3) C_6H_5Cl	(4) CH_2 =CHCl

22. Which of the following statement is false :

- (1) 40% solution HCHO is known as formalin
- (2) HCHO is least reactive in its homologous series
- (3) The B.P. of isovarelaldehyde is less than n-varelaldehyde
- (4) The boiling point of ketones are higher than that of aldehydes

23. If $n + \iota = 8$ then the expected no. of orbitals will be :

(1) 4 (2) 9 (3) 16 (4) 25

24. $Alc. KOH$ 2Cl (1) Lewsite (2)	$E = \frac{Ca(C)}{C}$ Westron	$\stackrel{\text{DH})_2}{\longrightarrow} \text{here the} $ (3) Acetylene	compound C will be : e tetra chloride (4) Both 2 and 3	i i
25. Which of the foll (1) BeCl_2 (2)				
26. The laughing gas (1) N_2O_4 (2)		(3) N ₂ O	(4) N ₂ O ₅	
pH value of this	solution w	ill be :	ution is 3.98 x 10^{-6} mole per liter	:. The
		(3) 5.4		
28. The reaction of s (1) Butane (2)				
29. Which of the foll (1) Carbamic acid (3) Lactic acid	1 (2) Ba	rbituric acid	ntain – COOH group :	
30. Which of the foll (1) XeF_6 (2)	0	-	none does not exists : (4) XeF ₂	
31. FeSO₄, 7H₂O is : (1) Mohr's salt		triol (3) G	reen vitriol (4) White vitriol	
32. The solution of B formed which is		l. HCI when d	liluted with water white precipi	tate is
(1) Bismith oxych(3) Bismith hydro	nloride			
33. The strongest act (1) acetic acid (2) trichloroac (3) dichlorace (4) monochlor	l cetic acid etic acid	id		
(2) This does(3) It does not	not perform not gives e t disappear	n polymerization limination read	on reaction ction dilute KMnO4 solution	
35. Which of the foll (1) $C_6H_5NH_2$	-	trongest base H ₃ NH ₂	:	

(3) NH ₃	(4) CH ₃ CONH ₂		
36. Which of the follow easily :	ing aromatic comp	ound gives sulp	honation reaction very
(1) Chlorobenzene	(2) Nitrobenzene	(3) Toluene	(4) benzene
37. The geometry of I3 -(1) Triangular		Tetrahedral	(4) T-shape
38. The half life of a rac 560 days will becom		s 140 days. 1 gm	n. of this element after
(1) <u>1</u> gm (2)		. (4)	<u>1 g</u> m. 2
39. The volume concent (1) 5 (2) 11	• •	peroxide 6.8% (4) 20	concentration will be :
40. Which of the follow (1) Ethane (2) Pro	ing on combustion opane (3) Methan	0	energy :
Anhy. 41. C6H6 + CH3CL (1) Gattermann (3) Friedel-Craft	(2) Reimer-tieman		of above reaction is :
42. The oxidation state $(1) + 4$ $(2) + 3$			
43. The natural rubber (1) 1, 3- butadiene		isoprene (4) no	one of these
44. Nylone-66 is a : (1) polyester (2) pol	lyamide (3)	polyacrylate	(4) none of these
45. 2NO(g) + CI ₂ (g) \rightarrow	2 NOCI The equili	brium constant	for this reaction is :
(1) $K_c = \frac{[NOCI]^2}{[NO]^2 [CI_2]^2}$	(2) $K_c = \int_{[2]}^{[2]}$	$\frac{\text{NOCI} ^2}{(\text{NO})^2[\text{CI}_2]}$	
(3) $K_c = \frac{[NOCI]^2}{[NO]^2 [CI^2]}$	(4) $K_c = [2]$	<u>2NOCI]</u> NO][CI]	
5. $C_6H_6 + CO + HCI \longrightarrow$ (1) anhydrans ZnO	• $C_6H_5CHO + HCI$ (2) $V_2O_5/450^0$ C	here A is :	

(3) anhydrous AICO₃ (4) solid KOH

47.	The values of for H C) respectively. Th) ⁻⁵ (at 25 ⁰
	(1) $CH_3COOH(2)$ H	ICN (3) bo	th (4) none	e of these	
48.	 In which of the foll (1) CH₃CH₂CH (2) CH₃CH₂CH (3) CH₃CH₂CH (4) CH₃CH₂CH 	(CH ₃) CH ₂ OH (CH ₃) CHOH ₂ CH ₂ CH ₂ OH	atom (asterisk) i	s asymmetric :	
49.	Benzene reacts wit (1) Acetophenone				
50.	. Which of the follow	ving is reducing	g agent :		
	(1) H_2S (2) H_2			r_2O_7	
51.	. In which of the fol mechanism is max		loride the possib	ility of SN ₁ react	ion
	(1) (CH ₃) ₂ CHCI	$(2) (CH_3)_3C-C$	$CI \qquad (3) CH_3$	CI (4) CH ₃ CH	$[_2CI]$
52.	. The energy produc	ed realated to i	nass decay of 0.	02 amu is :	
	(1) 28.2 MeV	(2) 931 MeV	(3) 18.62 MeV	(4) none of	these
53.	The mole of hydro (1) 5×10^2 (2)				
54.	 Petroleum is main (1) Aliphatic alo (2) Aromatic hy (3) Alipnetic hy (4) None of thes 	cohol drocarbon drocarbon se			
55. C ₆] will be	H ₆ OCH ₃ + HI		The prod	ucts in the above	reaction
	(1) $C_6H_5I+CH_3OH$ (3) $C_6H_5OH+CH_3I$		H ₅ CH ₃ +HOI H ₆ +CH ₃ OI		
56	F3 is : (1) Bronsted base	(2) Lewis bas	e (3) Lewis acid	(4) Bronsted acid	1
57. WI	hich of the following	g compound giv	es violet colour	with FeCI ₃ soluti	on:

58. Hypo solution forms which of the following complex compound with AgCI : (1) $Na_5[Ag(S_2O_3)_3]$ (2) $Na_3[Ag(S_2O_3)_2]$

(4) Phenol

(1) Benzaldehyde (2) Aniline (3) Nitrobenzene

(3)	Na ₂ {Ag(S	5 ₂ O ₃) ₂]	(4) Na	3[Ag(S ₂	2O ₃) ₃]			
59. Molec (1) ferro m	• •	e n is : (2) diamagne	etic	(3) par	ra magn	etic	(4) non ma	gnetic
60. Bonds (1)	•	ene are : (2) one π bor	nd	(3) 3π	bonds	(4) noi	ne of these	
(1) (2) (3)	It gives te It gives te It gives se	ent for Griyn rtiary alcohol rtiary alcohol econdary alcoh rimary alcohol	with acet with acet ol with a	amide one cetaldel	-			
		lowing alkane (2) C ₃ H ₈		-			al temperat	ure :
(1) (2) (3)				e maxin	num in	:		
		benzene mole (2) 7.8 gm.		x 10 ⁻²³		(4) noi	ne of these	
65. CuFeS (1)	-	es (2) m	alachite	(3) cha	alcosite	(4) cha	alcopyrites	
	ry halides SN ₁	follow the fol (2) SN ₂	-	reaction th		nism : ne of the	ese	
	Si belong liquid	to the same g (2) gas	roup of (3) sol		c table, (4) nor			SiO ₂ is a
(1) (2) (3) (4)	there is as bond ener the ioniza the electro	le H_2O is a liq sociation due to gy of OH high tion potential of negativity of	of oxygen i	gen bon n is high s high	1	able ba	nd goog 45 4	hot
unsaturat hydrogen (1)	ed asymm atoms." T	art of the mol netric carbon a This statement ikoff's law effect	atom wh	ich is li			-	
(2)	Darran ² c 1-	af distanting	-					

a :

(3) Bayer's law of distortion

(4) none of these

70. The conjugate base of N (1) N_2H_4 (2) NH	NH3 is : H_2^- (3) NH_4^+	(4) NH ₂ ⁺
71. (a) N_2 and (b) C_2H_2 . Th (1) (a) 2,2 (b) 2,2 (3) (a) 2,1 (b) 2,3	(2) (a) 1,2 (b) 2,1	l in the molecules are respectively :
	ng compound there are	e maximum no. of sp ² hybrid C
atoms: (1) Benzene (2) 1,2,4-hexatriene		
(1) octahedral		i tals of 20% character will be : iidal
74. The pH of a solution is the pH value will be :	5. If the dilution of thi	is solution is increased by 100 times,
-	(3) 9	(4) 8
75. The required amount of hydrocarbon is 50 ml. The (1) C ₂ H ₂ (2) C ₂		-
76. The formula of Cele (1) SrSO ₄ (2) Sr	estine is : CO_3 (3) SrO	(4) $SrCl_2$
	2. The required amou (2) 2 faraday (3) 1 fa	nt of electricity for this reaction is : araday (4) 3 faraday
	gy of N≡N is very high bitals are not present V group	
 79. The normal temper (1) lowered by 2 (2) increased by 2 (3) lowered by 10 (4) increased by 11 	times 2 times) times	10 ⁰ C, the rate of reaction will be :
80. Which of the follow chloride :	ving gives red precipit	ate with ammonical cuprous
(1) Propane (2) Etl	hane (3) Methane	(4) Acetylene

- 81. $[Cu(NH_3)_4]^{2+}$ snows the following hybridization : (1) dsp² (2) sp³d (3) dsp³ (4) sp³
- 82. A solution contains CI-, I and S O₄³⁻ ions in it. Which of the following ion is capable to precipitate all of above when added in this solution :
 (1) Pb²⁺
 (2) Ba²⁺
 (3) Hg²⁺
 (4) Cu²⁺
- 83. Fool's gold is : (1) Cu_2S (2) FeS_2 (3) Al_2O_5 (4) $CuFeS_2$
- 84. In which of the following compound the central atom is in sp² hybrid state : (1) OF_2 (2) $HgCl_2$ (3) XeF_2 (4) NH_2^+
- 85. The number of alkenyl groups possible from C_4H_7 are : (1) 7 (2) 5 (3) 3 (4) 8

86. The tetraethyl lead mixed in petrol is works as :

- (1) Cooling agent
- (2) Anti knocking agent
- (3) Bleaching agent
- (4) None of these

87. The alkaline hydrolysis of ester is known as :

(1) dehydrogenation (2) dehydration (3) esterification (4) saponification

- 88. The degree of ionization of 0.4 M acetic acid will be : $(K_a = 1.8 \times 10^{-5})$ (1) 6.71 x 10⁻³ (2) 1.6x10⁻³ (3) 0.4x1.8x10⁻⁵ (4) 1.8x10⁻⁵
- **89.** Haber process is used for production of which of the following : (1) NH₃ (2) HNO₃ (3) H₂SO₄ (4) O₃
- 90. The p_{ka} value of phenolphthalein is 9.1 and the pH range is 8-10. In which of the following titrations it can be used as an indicator :
 - (1) NH₄OHand HCI
 - (2) NH_4OH and CH_3COOH
 - (3) NaOH and HCI
 - (4) NH₄OH
- 91. Number of electrons in a one molecule of CO₂ : (1) pb^{2+} (2) Hg^{2+} (3) Ba^{2+} (4) Cu^{2+}
- 92. Which of the following species shows the maximum magnetic moment : (1) Mn^{+6} (2) Ni^{2+} (3) Fe^{3+} (4) Ag^{+}
- 93. K $_{sp}$ value of CaF₂ is 3.75 x 10¹¹ The solubility will be :

 (1) 1.45x10⁻¹¹ mol/litre⁻¹ (2) 3.45x10⁻⁴ mol/liter⁻¹ (3) 2.05x10⁻⁴ mol/liter⁻¹ (4) 3.75 x 10⁻¹¹ mol/liter⁻¹
 94. When Pb₃O₄ is heated with dilute H N O₃ it gives : pbO₂ and pb(NO₃)₂ pbO and pb(NO₃)₂ pbO₂ pbO
95. C-H bond length is least in : (1) Acetylene (2) Methane (3) Ethylene (4) Ethane
 96. The minimum nos. of carbon atoms in ketones which will show chain isomerism will be : (1) Seven (2) four (3) six (4) five
 97. Which of the following organic compound could not be dried by anhydrous CaCI₂: (1) ethanol (2) benzene (3) chloroform (4) ethyl acetate
 98. Which of the following compound forms white precipitate with bromine water : (1) Nitrobenzene (2) Phenol (3) Benzene (4) all above
99. Gypsum is : $(1) CaSO_4.H_2O$ $(2) CaSO_4. 2H_2O$ $(3) 2CaSO_4. 2H_2O$ $(4) CaSO_4$
100.Which of the following carbonium ion is most stable :
(1) CH_3-C-CH_3 (2) CH_3CH_2
CH ₃
(3) $CH_30CH-CH_3$ (4) CH_3

				ANS	WEK S	HEEI				
1.(2)	2.(3)	3.(3)	4.(2)	5.(2)	6.(4)	7.(1)	8.(3)	9.(1)	10.(4)	11.(1)
12.(1)	13.(2)	14.(4)	15.(2)	16.(4)	17.(3)	18.(2)	19.(2)	20.(2)	21.(1)	22.(2)
23.(3)	24.(4)	25.(4)	26.(3)	27.(3)	28.(3)	29.(2)	30.(3)	31.(3)	32.(1)	33.(2)
34.(3)	35.(2)	36.(3)	37.(2)	38.(1)	39.(4)	40.(4)	41.(3)	42(3)	43.(3)	44.(2)
45.(3)	46.(3)	47.(1)	48.(1)	49.(1)	50.(1)	51.(2)	52.(1)	53.(2)	54.(3)	55.(3)
56.(3)	57.(4)	58.(3)	59.(3)	60.(1)	61.(1)	62.(3)	63.(3)	64.(3)	65.(4)	66.(1)
67.(3)	68.(1)	69.(1)	70.(2)	71.(3)	72.(4)	73.(4)	74.(2)	75.(1)	76.(2)	77.(2)
78.(2)	79.(2)	80.(4)	81.(1)	82.(1)	83.(2)	84.(4)	85.(4)	86.(2)	87.(4)	88.(1)
89.(1)	90.(3)	91.(1)	92.(3)	93.(3)	94.(1)	95.(1)	96.(4)	97.(1)	98.(2)	99.(2)
100.(1)										

ANSWER SHEET